Large-scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: identification of the factors involved in the modulation of photosystem stoichiometry.

نویسندگان

  • Hiroshi Ozaki
  • Masahiko Ikeuchi
  • Teruo Ogawa
  • Hideya Fukuzawa
  • Kintake Sonoike
چکیده

Since chlorophyll fluorescence reflects the redox state of photosynthetic electron transport chain, monitoring of chlorophyll fluorescence has been successfully applied for the screening of photosynthesis-related genes. Here we report that the mutants having a defect in the regulation of photosystem stoichiometry could be identified through the simple comparison of the induction kinetics of chlorophyll fluorescence. We made a library containing 500 mutants in the cyanobacterium Synechocystis sp. PCC 6803 with transposon-mediated gene disruption, and the mutants were used for the measurement of chlorophyll fluorescence kinetics for 45 s. We picked up two genes, pmgA and sll1961, which are involved in the modulation of photosystem stoichiometry. The disruptants of the two genes share common characteristics in their fluorescence kinetics, and we searched for mutants that showed such characteristics. Out of six mutants identified so far, five showed a different photosystem stoichiometry under high-light conditions. Thus, categorization based on the similarity of fluorescence kinetics is an excellent way to identify the function of genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of N-terminal threonines in the D1 protein impairs photosystem II energy transfer in Synechocystis 6803.

Mutants of the cyanobacterium Synechocystis sp. PCC 6803 with N-terminal changes in the photosystem (PSII) II D1 protein were analysed by flash-induced oxygen evolution, chlorophyll a fluorescence decay kinetics and 77 K fluorescence emission spectra. The data presented here show that mutations of the Thr-2, Thr-3 and Thr-4 in D1 do not influence the oxygen evolution. A perturbation on the acce...

متن کامل

The mutant of sll1961, which encodes a putative transcriptional regulator, has a defect in regulation of photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803.

In acclimation to changing light environments, photosynthetic organisms modulate the ratio of two photosynthetic reaction centers (photosystem I [PSI] and photosystem II). One mutant, which could not modulate photosystem stoichiometry upon the shift to high light, was isolated from mutants created by random transposon mutagenesis. Measurements of chlorophyll fluorescence and analysis of the rea...

متن کامل

Photophysiological and Photosynthetic Complex Changes during Iron Starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942

Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abun...

متن کامل

PsaK2 subunit in photosystem I is involved in state transition under high light condition in the cyanobacterium Synechocystis sp. PCC 6803.

To avoid the photodamage, cyanobacteria regulate the distribution of light energy absorbed by phycobilisome antenna either to photosystem II or to photosystem I (PSI) upon high light acclimation by the process so-called state transition. We found that an alternative PSI subunit, PsaK2 (sll0629 gene product), is involved in this process in the cyanobacterium Synechocystis sp. PCC 6803. An examin...

متن کامل

RpaA Regulates the Accumulation of Monomeric Photosystem I and PsbA under High Light Conditions in Synechocystis sp. PCC 6803

The response regulator RpaA was examined by targeted mutagenesis under high light conditions in Synechocystis sp. PCC 6803. A significant reduction in chlorophyll fluorescence from photosystem I at 77 K was observed in the RpaA mutant cells under high light conditions. Interestingly, the chlorophyll fluorescence emission from the photosystem I trimers at 77 K are similar to that of the wild typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 3  شماره 

صفحات  -

تاریخ انتشار 2007